Instrumenting gait with an accelerometer: A system and algorithm examination
نویسندگان
چکیده
Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required.
منابع مشابه
ارائه روشی جدید به منظور استخراج مراحل استقرار و تاب خوردن گام مبتنی بر تغییرات شتاب در تجزیه تحلیل راه رفتن افراد نرمال و مبتلا به پارگی رباط صلیبی
Background and purpose: High cost and complication of some instruments assessing functional capabilities in athletes with anterior cruciate ligament (ACL) deficiency have caused increasing attentions towards using inexpensive and user-friendly instruments as accelerometers and gait analyzing based on signal processing. Therefore, gait phases detection seems to be necessary while accelerometer i...
متن کاملComparison of accelerometer-based and treadmill-based analysis systems for measuring gait parameters in healthy adults
[Purpose] This study aimed to determine the correlation between accelerometer-based and treadmill-based analysis systems for measuring gait parameters during comfortable walking in healthy young adults. [Subjects and Methods] Twenty-three healthy adults participated in this study. Gait parameters were measured with simultaneous use of accelerometer-based and treadmill-based gait analysis system...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملMEMS Based Sensing and Algorithm Development for Fall Detection and Gait Analysis
Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کامل